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ON SOME ACCURATE FINITE-DIFFERENCE METHODS 
FOR LAMINAR FLAME CALCULATIONS 

J. I. RAMOS 

Department of Mechanical Engineering, Carnegie-Mellon University, Pittsburgh, P A  15213, U.S.A. 

SUMMARY 
The ozone-decomposition flame has been studied by means of fourth- and second-order accurate schemes. 
The fourth-order methods include a method of lines, a time-linearization algorithm, and a rnajorant operator- 
splitting technique. The second-order schemes include two time-linearization methods which use different 
temporal approximations. It is shown that the fourth-order techniques yield comparable results to those 
obtained with very accurate finite element and adaptive grid finite-difference algorithms. The results of the 
second-order methods are in good agreement with second-order explicit predictor-corrector methods but 
predict a lower flame speed than that obtained by means of fourth-order techniques. It is also shown that the 
temporal approximations are not as important as the spatial approximations in flame propagation problems 
characterized by the presence of several small time scales. 

KEY WORDS Finite-difference Schemes Time-linearization Methods Operator-splitting 
Techniques Methods of Lines Combustion. 

INTRODUCTION 

Flame propagation phenomena are characterized by the presence of very steep fronts;’ away from 
the flame front, the species mass fractions and temperature profiles are almost uniform.2 The 
temporal and spatial resolutions of the flame front are problems of great importance in combustion 
theory. In this paper we study the ozone-decomposition laminar flame. This flame has been 
previously studied by Bledjiaq3 M a r g ~ l i s , ~  Reitz’ and Meintjes.6 Bledjian3 employed mass co- 
ordinates and reduced the set of conservation equations of species mass fractions and energy to a 
system of reaction-diffusion equations which were discretized in space using a second-order 
accurate scheme. The resulting set of ordinary differential equations was solved by means of a 
Runge-Kutta method and yielded a wave speed of 54.3 cm/s, although this value depended on the 
species used in the computation of the flame speed. Bledjian’s3 results did not exactly give a steady- 
state flame speed and were computed with 100 grid points. 

Margolis4 employed sixth-order B-splines, 272 collocation points, and solved the resulting set of 
ordinary differential equations by means of a fourth-order accurate Runge-Kutta method. His 
computed wave speed was 49.7 cm/s. Meintjes6 used a second-order accurate explicit predictor- 
corrector method and found a flame speed of 48 cmjs. Meintjes6 estimated that his flame speed 
might be in error by 2 cm/s because of the integrations required to calculate the fluid velocity. The 
flame speed was computed in a 121-point grid. Reitz5 used an adaptive grid, explicit Saul’yev 
method and found a flame speed of 49.8 k 0.1 cm/s when 30 grid nodes were employed in the 
calculations. Reitz’s’ result is in very good agreement with that obtained by M a r g ~ l i s . ~  
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Cramarossa and Dixon-Lewis7 have also studied the ozone-decomposition flame by means of a 
time-dependent numerical method. 

The numerical results presented in References 1-7 as well as in this paper were calculated by 
employing a time-dependent approach and constant transport properties. Warnatz8 and Heimerl 
and Coffee' have also calculated the ozone-decomposition laminar flame using transport 
coeficients which are a function of the temperature. Warnatz' employed an implicit technique 
while Heimerl and Coffee' used a relaxation method and the PDECOL package of Madsen and 
Sincovec." This package was also employed by Margolis.' The results of Heimerl and Coffee' 
agreed within 12 per cent with those of Warnatz.' The differences were more remarkable in the 
atomic oxygen and temperature profiles and were attributed to the different input coefficients 
employed in the calculations. 

Coffee and Heimerl' ' have also studied H,-O,-N, flames and performed a sensitivity analysis 
to determine the dependence of the laminar flame speed on the reaction pre-exponential factor, 
species diffusion coefficients and thermal conductivity. Coffee and Heimerl" also studied H,-0,- 
N, flames by means of different models for the transport properties in order to assess the effects of 
the diffusion coefficients and thermal conductivity on the flame speed, and concentration and 
temperature profiles. It was found that different transport mechanisms could yield flame speeds 
which could differ by about 16 per cent from each other. A model with constant transport 
properties was found to be in very good agreement with more sophisticated models. 

Models with variable transport properties have also been employed by Tsat~aronis , '~  Smoot et 
d .  '', Warnatz,' '-' Wa rnatz et d.'* and Miller et d." Tsa t~a ron i s '~  employed the time- 
dependent method developed by Spalding et a1." and Stephenson and Taylor" to study laminar 
flames in CH,-0,-N, mixtures. Tsa t~aronis '~  used a kinetic mechanism which consisted of 29 
chemical reactions and found that the flame speed is very sensitive to the thermal conductivity. A 
variation in the transport coefficient was found to result in a 5 per cent variation in the flame speed. 
Smoot et a1." also employed the method developed by Spalding et a1." and used an explicit 
technique for the diffusion terms of the governing equations whereas a linearized implicit method 
was employed for the kinetic terms. Smoot et al." studied the effects of the pressure, initial methane 
concentration and temperature, reaction rate constants and transport coefficients on a kinetic 
mechanism which consisted of 28 reactions and reported good comparisons with the available 
experimental data. 

Warnatz" has studied flames in H,-0,-N, mixtures by means of 18 chemical reactions using 
variable transport properties and an implicit method which yields a tridiagonal system of linear 
equations. The same numerical method was employed to study the structure of hydrocarbon- 
air,16 and alkene and acetylene The numerical studies of Coffee and Heimerl'.' ' , 1 2  

and Warnatz'. "-" can yield very important information concerning the effects of the transport 
properties, kinetics, and initial temperature, pressure and concentration on the propagation of 
laminar flames, their structure and speed. They can also provide information about the importance 
of certain chemical reactions in flame propagation problems under different conditions. A 
sophisticated steady-state model has been developed by Miller et ~1 . ' '  to explain a wide variety of 
experimental results. The model is based on the steady-state conservation equations of mass and 
energy and employs a damped Newton method and/or a modified Newton method. The 
calculations are started in a coarse grid which is determined from experimental results and refined 
in steep regions until a specified convergence criterion is achieved. 

In this paper the ozone-decomposition laminar flame is studied by means of fourth- and second- 
order accurate finite-difference schemes. The fourth-order schemes include a time-linearization 
algorithm, a method of lines and a majorant operator-splitting technique. The second-order 
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methods are based on time-linearization but employ first- and second-order temporal approxim- 
ations. All of these finite-difference methods use fixed grids, are aimed at assessing the influence of 
different spatial and temporal approximations on the computed flame speeds, and their results 
are compared with those obtained by using finite element, adaptive grid finite-difference, and fixed- 
node finite-difference algorithms. The calculations have been performed with constant properties 
and are compared with those reported in References 1-7. 

PROBLEM FORMULATION 

Consider the propagation of a laminar flame through an unconfined mixture in one-dimensional 
space, - 03 < x < 00, where the upstream and downstream locations correspond to unburned and 
burned gases, respectively. Assuming that the laminar flame speed is small compared with the 
velocity of sound in the unburned gases, the pressure can be assumed uniform and constant. 
Assuming also that the specific heats at constant pressure of the different species are equal and 
constant, neglecting the viscous dissipation terms, and assuming that the species diffusion 
coefficients are equal, the equations governing the conservation of mass, momentum, energy and 
species mass fractions can be written as22 

p =constant = po  (2) 
N 

pc, [ a T  at+ u- 3 =- as,( a- a,3 - i = l  1 o,hP 

p [a: -++- 2]-:x( -- pD’ Ej +oj, j = l ,  ..., N - 1  

N- 1 
Y N = l -  c Yi 

i =  1 

(3) 

(4) 

where p is the density; u, the velocity; p ,  the pressure; t, the time; x, the axial co-ordinate; pot the 
upstream pressure; C,, the specific heat at constant pressure; T, the temperature; a, the thermal 
conductivity; N ,  the number of species; mi, the reaction rate of species i; h?, the enthalpy of 
formation of species i; Yj,  the mass fraction of speciesj; D is the species diffusion coefficient; Wi, the 
molecular weight of species i; 8, the universal gas constant. 

Equations (1)-(4) can be simplified by introducing mass (or Lagrangian) ~o-ordinatesl-~ by 
means of the mapping (t, x )  -+ ( t* ,  W) defined by 

t* = t (7) 

av 
ax P -= 

- - p u  
a y  
at 
-_  (9) 
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Making the above transformation of co-ordinates we obtain 

where p 2 D  has been assumed constant and where Le is the Lewis number. In our calculations 
p o  = 0.821 atm, Le = 1, C, = 02524 cal/gr/”K, and p 2 D  = 4.3358 x lo-’ gr2/cm4/s. 

In order to fully specify the problem formulation we need to define the reaction rate terms wi and 
the enthalpies of formation h;. We thus consider the following chemical reaction mechanism4 

(Reaction 1) 0, +xF?o, + 0 + x  (12) 

(Reaction 2) 0 + 0 3 s 2 0 2  (13) 

(Reaction 3) 0, + x e 2 0  + x (14) 

such that the rate of production mi of species i is given by the law of mass action as 

where vi,,  is the stoichiometric coefficient of species i in reaction r; K,, and K,, are the specific rate 
constants for the forward and backward modes of reaction r; ’ and ” denote reactants and products; 
and c are the concentrations which are related to the mass fractions by 

ci = p Yi/ wi 

K ,  = A,TB exp ( - E, /aT)  

(16) 

(17) 

The general form of the specific rate constants is 

where A,, B and E ,  are the pre-exponential factor, the temperature exponent and the activation 
energy, respectively. The values of these parameters can be found in Reference 4 and are not 
repeated here. It should be pointed out that in equations (12) and (14) X stands for any of the three 
species, i.e. 0, 0, or O,, so that equations (12)-(14) represent a system of seven reversible chemical 
reactions with three species. 

Equations (10) and (11) can be written in vector form as 

8 A  a2A 
-=a7+S 
at a\y 

where 

and the superscript T denotes transpose. 

THE FINITE-DIFFERENCE SCHEMES 

Several finite-difference schemes have been employed to solve equation (1 8). The methods include 
a fourth-order accurate method of lines, a fourth-order accurate majorant operator-splitting 
technique and three time-linearization schemes. These include first- and second-order accurate 
time approximations, and second- and fourth-order accurate spatial discretizations. The 
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aforementioned schemes use different spatial and temporal approximations and are employed here 
to assess the influence of different truncation errors and numerical schemes on the numerical 
calculations. A brjef description of the finite-difference methods follows. 

A fourth-order accurate method of lines 

In this technique equation (18) is discretized as 

dAi a 
dt* 12AY2 

- [ - 4 - 2  + 16Ai-1- 30Ai + 16Ai+ l -  Ai+ 2 3  + Si (19) 

where the second-order spatial derivative has been discretized, but the time derivative has been 
kept continuous. This yields a system of coupled non-linear ordinary differential equations which 
have been solved by means of a fourth-order accurate Runge-Kutta method. The spatial derivative 
discretization has an associated truncation error equal to O(AY4), where O(AY4) denotes terms of 
the order of AY4. Thus the total truncation error of this scheme is O(At*4,AY4). 

A fourth-order accurate majorant operator-splitting method 

In equation (18) two time scales are present: the characteristic diffusion and reaction times. The 
non-linear reaction terms, Si can be treated separately from the diffusion terms as long as they 
remain coupled. This allows us to split the reaction-diffusion operator of equation (18) into two 
operators: a diffusion operator and a reaction operator. This procedure is generally known as the 
method of fractional steps and is due to Y a n n e n k ~ . ~ ~  In each fractional step one term of equation 
(18) is considered alone, while the remaining terms are ignored. Equation (18) is thus split into a 
reaction and a diffusion operator as follows: 

L, (reaction operator): 

a~~ a2Ai- 

at* a y 2  
LD(Ai) = ~ - a - -  - 0 LD (diffusion operator): 

The solution is then advanced from time (t*)" to (t*)"+' by the sequence 

A:+' = LD[LR(Ar)] 

In our calculations equation (20) was first integrated using a fourth-order accurate Runge-Kutta 
method since it represents a system of coupled non-linear ordinary differential equations. The 
solution of equation (20) was denoted by Ai; this value was then used to solve equation (21) which 
was discretized by means of a compact three-point scheme24 for the diffusion terms. The 
discretization of the diffusion terms is given by 

where d2 is the second-order accurate finite-difference operator defined by 

J2Ai  = Ai+ 1 - 2Ai + Ai- 1 (24) 

Equation (21) is then discretized as 

-- - a d2 [AY+>Ai] 
At* AY2 1 + d2/12 
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which can be written as 

( 1 +- :;) (A;+' - A i ) = y 6 2 [ A ; + 1 + A i ]  (26) 

where y = aAt*/2AY2. 
Equation (26) represents a system of linear finite-difference equations which can be written as a 

tridiagonal matrix. This matrix was solved by means of the standard tridiagonal matrix algorithm. 
It should be pointed out that during the integration of the reaction operator (20) the 

time step was varied as necessary to maintain a specified accuracy and was, in general smaller (by 
about a factor of 3) than the time step At* = (t*)D+ - (t*)". Larger time steps were also used when 
solving the reaction operator equation but resulted in uncoupling between the reaction and 
diffusion processes and yielded, after some time, complete instability. It was found that in order to 
maintain a prescribed accuracy the time step used in the solution of the reaction operator should be 
smaller than one third of At*. 

Time-linearization schemes 

Equation (18) represents a system of coupled non-linear partial differential equations whose 
solution may be accelerated by means of linearization schemes. In this section we describe some 
time-linearization methods which have been employed to solve equation (18). These methods use 
different spatial and temporal approximations and are aimed at assessing the influence of several 
truncation errors on the ozone-decomposition laminar flame speed. We use time-linearization as 
opposed to iteration-linearization schemes in which the non-linear terms (in our case, the reaction 
terms, Si) are linearized with respect to the previous iteration. This linearization in iteration space 
results in a system of linear, coupled finite-difference equations which may be solved by means of 
iterative or block methods. In time-linearization methods, however, the non-linear terms are 
linearized with respect to the previous time values. This results in a system oflinear finite-difference 
equations. Iteration-linearization methods yield equations which have to be iterated to obtain the 
solution. Time-linearization schemes do not require iterations to converge within the time step. 
Iteration-linearization schemes are generally associated with the work of Bellman and Kalaba;25 
time-linearization methods are normally associated with the works of Briley and McDonald26 
and Beam and Warming.27 

In what follows we introduce several time-linearization schemes that yield systems of tridiagonal 
matrices whereas the Briiey and McDonaldz6 method yields a block tridiagonal matrix. 

Equation (18) was discretized using a first-order accurate method as 

A;" - A ;  = 2y62A;+' + At*,";+' (27) 
The reaction term was linearized as 

which, when substituted into equation (27), yields a tridiagonal matrix for the unknowns A? The 
matrix diag (aS/aA)  is diagonal and signifies that the linearization of the source term Si is only 
performed with respect to that variable whose equation is being solved. That means that when 
equation (28) is substituted into equation (27) there results a system of linear uncoupled equations 
for the temperature, ozone mass fraction and oxygen mass fraction. This system was written as a 
tridiagonal matrix and solved by means of the standard tridiagonal matrix algorithm. Equations 
(27) and (28) define our first time-linearization algorithm whose truncation error is O(At*, AY'). 
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Equation (18) can be discretized by using a Crank-Nicolson scheme as 

Introducing equation (28) into equation (29), a system of linear, uncoupled finite-difference 
equations is obtained. This system can be solved by means of the standard tridiagonal matrix 
algorithm. Equations (28) and (29) represent our second time-linearization scheme whose 
truncation error is O(At*', AY'). 

If instead of substituting equation (28) into equation (29) we substitute 

we obtain a system of linear, coupled equations for the temperature and mass fractions of oxygen 
and ozone. This system can be written as a block tridiagonal matrix which can be solved directly by 
using LU decomposition. Introducing equation (30) into equation (29) results in a time- 
linearization algorithm which is associated with Briley and McDonald.26 It should be pointed out 
that in equation (30) the linearization of the non-linear terms is performed with respect to all the 
independent variables, whereas that of equation (28) is only performed with respect to one variable. 
These two linearization methods yield systems of coupled and uncoupled linear algebraic 
equations, respectively. Thus, although in time-linearization schemes the finite-difference 
equations are linear, one has the option to eliminate their coupling by considering only the 
diagonal elements of the Jacobian matrix (aS/aA) as indicated in equation (28). 

Our third time-linearization method employs the compact three-point approximation given by 
equation (23) for the diffusion terms. This results in the following system of finite-difference 
equations 

At* 
2 

[ A ; + A ; + 1 ]  +-[S;+S;+'] 
6' 

4 = y 1 + pp2 A ; + l -  

which can be arranged as 

( 1  + g ) ( A ; + l  -A; )  = $,(A;+ A;+') +-- 1 + - [s; + s;"] 
At*( 2 ;;) 

Substituting equation (28) into equation (32) results in a system of non-linear, uncoupled finite- 
difference equations whose truncation error is O(At*', AY4). It should be pointed out that 
equation (3 1) corresponds to a Crank-Nicolson discretization algorithm where the second-order 
spatial derivative has been replaced by a three-point compact, fourth-order accurate approxim- 
ation. Equations (28) and (32) define our third time-linearization algorithm. 

PRESENTATION AND DISCUSSION OF RESULTS 

The aforementioned finite-difference schemes were employed to compute the ozone- 
decomposition laminar flame speed. An initial flame front was assumed to propagate into an 
unburned mixture composed of 25 per cent (by volume) of O3 and 75 per cent of 0,. The tem- 
perature and pressure of the unburned mixture are To = 300 K and po = 0821 atm, respectively 
The finite-difference calculations were performed with 121 grid points and up to the same time, i.e. 
t = 2057 ,us, in all the methods employed. The infinite domain - co < Y < co was truncated in such a 
way that the locations of the upstream and downstream boundaries did not affect the computed 
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results. The truncated domain corresponds to 0 I Y I Y, = 2.5239 x g/cm2; the down- 
stream location of the truncated domain corresponds to that of Marg01is.~ Initially the following 
profiles were assumed: 

Y,= ~T-jcos"=], 1 1 8 . 8 I Y / Y 0 I  10 
2 1.2Y0 

, 8.8 I Y/Yo I 10 

(33) 

(34) 

where Y o  = YJ50 and Y, and Y,  are the mass fractions of ozone (0,) and oxygen (0,). The mass 
fraction of atomic oxygen can be calculated from equation (5). 

Equation (18) was solved for the 0,, 0, and temperature since the atomic oxygen mass fraction 
is very small. The calculations were performed in non-dimensional co-ordinates similar to those of 
M a r g ~ l i s . ~  

Some sample results computed with the fourth-order accurate majorant operator-splitting 
method are shown in Figures 1-8. These Figures show the mass fraction and temperature profiles 
as a function of " /Yo. The x co-ordinate was calculated from equation (8) as 

x = s  dY - 

-a3 P 

As mentioned before the computational domain - 00 5 Y I co was truncated to 0 I Y 5 YT so 
that the lower limit of integration in equation (36) corresponds to 0. Equation (36) can also be 
written as 

which is the non-dimensional co-ordinate used in Figures 9-16. In the above expressions the 
subscript stands for conditions upstream of the flame front, i.e. for conditions at Y = - co. 

Figures 1-8 show the species mass fraction and temperature profiles at different times as a 
function of the mass co-ordinate Y which has been normalized by Yo. These Figures illustrate the 
early flame development, the diffusion of heat and the approach to the final steady-state profiles. 
Similar trends are observed in Figures 9-16 which show the species mass fraction and temperature 
profiles as a function of X (equation (37)). The results shown in Figures 1-16 were computed with 
the fourth-order accurate majorant operator-splitting method. Calculations were also performed 
with the fourth-order accurate method of lines, and the three time-linearization schemes (the time- 
linearization method of Briley and McDonald26 was not used in the present calculations) but could 
not be distinguished from those shown in Figures 1-16. There are, however,some differences in the 
computed flame speeds as will be shown later. Figures 1-16 were compared with those of 
Bledjian,3 Margolis? Reitz5 and Meintjes6 A comparison of our results with those of M a r g o l i ~ , ~  
who studied a premixed laminar flat flame by means of a finite-element method and empioyed 270 
breakpoints, shows very few differences except for those in the atomic oxygen. Margolis's4 atomic 
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oxygen profile in the burned gas region decreases slightly faster than the one computed here. This 
can easily be appreciated by comparing our Figures 8 and 16 with his Figures 1 and 2. 

A comparison of our results with those of B led j i a~~ ,~  who used a second-order accurate method 
of lines, shows a significant difference in the profile of atomic oxygen. Margolis4 claimed that the 
difference between his results and those of Bledjian3 could be explained in view of the multiple time 
scales involved in the problem, for a consideration of the rates at which each of the reactions occurs 
shows that the flame structure and propagation velocity are dominated by the decay of O3 into 0, 
and 0 and the recombination of 0 with 0, to form 0,. This result was also confirmed in our 
numerical calculations. It was also found that the small concentrations of 0 recombined with 
themselves to form 0, only after the mixture was nearly burned. 

Similar results were found by Meintjes6 who employed 121 grid points and an explicit predictor- 
corrector method. He also found that the atomic oxygen mass fraction presented a peak equal to 
(0.45 f 001 1) x just behind the flame. This peak should be compared with that of Margolis: 
i.e. with 4.51 x 

Reitz5 also studied the ozone-decomposition flame by means of an adaptive Saul'yev technique 
and found good agreement between his results and those of Margolis4 except for the flame location 
because of differences in the steady state laminar flame speed. Reitz5 results also show that the 
atomic oxygen mass fraction behind the flame front is slightly larger than that of M a r g ~ l i s . ~  Thus 
Reitz5 results are in agreement with our findings. 

In the steady state, equation (1 1) has a travelling wave solution whose speed can be calculated by 
employing the following equation 

ayj ay. 
at* ay 
- - + S S = O ,  j= 1,2 (38) 

where S is the steady state laminar flame speed. Substituting the values of aYj/at* given by equation 
(38) into equation (1 l), and integrating the resulting equation we obtain 

(39) 

where the following boundary conditions have been used at Y = - co and Y = co 

The value of S was calculated from equation (39) according to the numerical schemes described 
before. This value corresponds to 49.57, 49.51, 48.91, 48.97 and 49.38 cm/s for the fourth-order 
accurate method of lines, majorant operator-splitting method, first, second, and third time- 
linearization schemes, respectively. The accuracy of the time-linearization schemes increases when 
the magnitudes of the spatial and temporal truncation errors decrease. For example, the first and 
second time-linearization schemes are both second-order accurate in space, and first- and second- 
order accurate in time. They yield flame speeds of 48.91 and 48.97 cm/s, respectively. These results 
indicate that the temporal approximation is not as important as the spatial discretization; this is 
not surprising since a time step equal to 1 p s  was used in the calculations. There is substantial 
accuracy improvement when fourth-order accurate spatial approximations are employed. This can 
easily be seen by comparing the flame speed computed with the second time-linearization scheme 
(48.91 cm/s) with that of the third time-linearization method (49.38 cm/s) and those of the method 
of lines (49.57 cm/s) and majorant operator-splitting method (49.5 1 cm/s). These results also 
indicate that an increase in the temporal resolution improves the value of the computed flame 
speed. For example, the third time-linearization scheme which is second-order accurate in time 
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Table I. The efficiency of the numerical methods 

Method Wave speed (cm/s) CPU time* 

First time-linearization 
Second time-linearization 
Third time-linearization 
Majorant operator-splitting 
Method of lines 

~ 

48.91 
48.97 
49.38 
49.5 1 
49.57 

~~ ~~ 

1 .oo 
1.06 
3.88 
2 1 5  
4 2 8  

*Unity corresponds to 203 minutes of central processing unit time in a DEC-20 computer. 

yields a slower flame than the fourth-order accurate method of lines which is fourth-order accurate 
in time. However, as we mentioned before, the temporal accuracy does not play as an important 
role as the spatial accuracy since the time step employed in the calculations is small. 

The efficiency of the numerical methods employed in this study is shown in Table I which 
represents the wave speeds and CPU times. The CPU times have been normalized by the CPU time 
of the first time-linearization algorithm, i.e. equations (27) and (28), and correspond to 
computations performed with a time step equal to 1 p s  and carried out until a time equal to 2057 ps. 
By this time, all the numerical methods have reached a steady-state wave speed. The calculations 
were performed on a DEC-20 computer. 

As shown in Table I, the flame speeds computed with different numerical methods differ by less 
than 2 per cent from each other. Thus, the CPU times presented in Table I can be interpreted as the 
computational times required by different numerical methods to obtain the same (within 2 per cent) 
steady-state wave speed, i.e. the same accuracy. Table I indicates that the first and second time- 
linearization schemes are more efficient than fourth-order accurate methods. The fourth-order 
accurate majorant operator-splitting method is also very efficient but not as efficient as the first and 
second time-linearization schemes. This is because the operator-splitting method solves a sequence 
of two operators (cf. equations (20) and (21)) the solution of which is more expensive than the 
solution of only one operator. However, these costs decrease by using larger time steps in the 
solution of the diffusion operator (equation (21)). The third time-linearization method and the 
method of lines which are fourth-order accurate in space require more computational time than the 
other methods to achieve the same accuracy. This is because of the large number of non-linearly 
coupled ordinary differential equations in the method of lines (equation (19)), and the linearization 
and discretization of the non-linear source terms in the third time-linearization algorithm 
(equation(32)). It should be pointed out that in equation(32) the source terms S have to be 
discretized and then linearized as indicated in equation (28). The linearization was performed 
analytically but requires a large number of multiplications and divisions at three grid points, i.e. at 
i - 1, i and i + 1. Furthermore, the source terms are highly non-linear functions of the temperature, 
e.g. equation (17), whose linearization and evaluation at three grid points is much more costly than 
the evaluation of the source term at only one point as required by the first and second time- 
linearization algorithms, i.e. equations (27), (28) and (29). 

The flame speeds computed in the present study compare favourably with those obtained by 
Margolis4 and re it^.^ The flame speed calculated by Margolis4 is 49.7 cm/s and may be more 
accurate than our computed value since he used 270 breakpoints and sixth-order splines. The 
fourth-order accurate methods employed in this study yield results in close agreement with those of 
Margolis," but predict higher flame speeds than that computed by Bledjian3 who calculated a 
flame speed of 54 cm/s and found that this value depended on which species was used. This seems to 
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be due to the fact that he did not obtain a steady-state flame propagation. Bledjian’s3 flame speed is 
also higher than those computed with the second-order methods presented in this paper. 

2 cm/s) was found by Meintjes6 who employed a second-order 
accurate explicit predictor-corrector method. He found that his wave speed may be in error by 
about 2 cm/s because he inverted the transformation given by equations (8) and (9) in order to 
calculate the flame speed. A similar method was employed by Margolis4 who studied a burner- 
stabilized flat flame. Our numerical methods do not require the calculation of the fluid velocity u 
since the flame speed is calculated in mass co-ordinates through equation (39), which does not 
involve the fluid velocity. 

The flame speed computed by Reitz’ using an adaptive finite-difference scheme is about 49-8 
Olcm/s and is in close agreement with that computed by Margolis4 and the fourth-order 
accurate methods employed in the present study. The flame speeds based on the ozone and oxygen 
mass fractions differ from each other by less than 0.01 cm/s so that we can conclude that our speeds 
are the steady-state flame speeds. 

Although the flame speeds predicted by the time-linearization schemes employed in this study, 
particularly the fourth-order accurate method, are in very good agreement with those computed by 
using the method of lines, it cannot be concluded that time-linearization methods are as accurate as 
other numerical schemes. In the particular case considered here, the linearization of the highly non- 
linear terms seems to be appropriate due to the small time steps employed in the calculations. 
However, the accuracy of the time-linearization schemes deteriorates when large time steps are 
considered; in some cases, the linearization of the reaction terms may not yield a diagonally 
dominant matrix. This may be a problem for some matrix inversion algorithms. The accuracy of 
the majorant operator-splitting method is very much dependent on the time step used in the 
calculations; large times uncouple the reaction and diffusion processes and may yield complete 
instability. 

A flame speed of 48 cm/s ( 

CONCLUSIONS 

The ozone-decomposition laminar flame has been calculated by means of a fourth-order accurate 
method of lines, a fourth-order accurate operator-splitting algorithm, and a fourth-order accurate 
time-linearization scheme. Two second-order accurate time-linearization schemes have also been 
used to compute the species mass fractions and temperature profiles, and the laminar flame speed. 
It is shown that second-order schemes predict lower flame speeds than fourth-order accurate 
methods, and that the temporal approximations do not play as an important role as the spatial 
approximations in determining the accuracy of flame propagation problems which require small 
time steps. 

The numerical results are in good agreement with those obtained by means of finite-element and 
adaptive grid finite-difference algorithms when fourth-order accurate schemes are employed. The 
results obtained with second-order methods are in good agreement with those of second-order 
accurate explicit predictor-corrector schemes, but are lower than those obtained with a second- 
order accurate method of lines. 
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